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The notion of  a superposition of  a set o f  states and that of  a Jauch-Pi ron  state 
are geometrically interpreted in the context o f  the facial structure of  the state 
space of  a finite quantum logic. 

1. INTRODUCTION 

The state space fl(L) of a finite quantum logic (orthomodular poset) 
(Beltrametti and Cassinelli, 1981) L is a polytope. Whenever L is classical, 
i.e., a Boolean lattice, then fl(L) is the simplest kind of a polytope, namely 
a simplex. As geometrical objects, convex polytopes, or simply polytopes, 
have attracted the interest of many a mathematician. A considerable 
amount of literature has accumulated over the past 50 years which is 
concerned with the facial structure of polytopes. The collection of faces of 
a polytope, when ordered by set inclusion, forms a lattice. Notice that the 
face lattice of a polytope is Boolean if and only if the polytope is a simplex. 

It is the purpose of  this paper to give a geometrical meaning to both 
the notion of  a superposition of states and to that of a Jauch-Piron state 
thereby relating them to the facial structure of the state space of the finite 
quantum logic. 

2. PRELIMINARIES 

Let V be a real vector space. Let C be a convex subset of V. A subset 
F of C is said to be a face of C if, for elements x, y in C and real number 
t in [0, 1], 

tx + ( 1 - t ) y ~ F  ,=, x , y~F  
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In particular, a face of  C is a convex set. An element x in C is called an 
extreme point of C if the singleton set {x} is a face of C. The empty subset 
of  C and C itself are faces of C. Therefore, when ordered by set-inclusion, 
the collection ~ ( C )  of  faces of C forms a complete lattice. A co-atom in 
the lattice ~ ( C )  is said to be a facet of C. Let M be a subset of C. The 
intersection of all faces of  C which contain M is called the face generated 
by M and denoted by face(M). We write face(x) instead of face({x}) for an 
element x in C. 

A subset P of the real vector space V which is the convex hull of a 
finite set is called a polytope (Brgndsted, 1983; Griinbaum, 1967). Notice 
that a polytope is convex and compact in the unique linear Hausdorff 
topology z of  the finite-dimensional subspace lin(P) of V. A polytope has 
finitely many extreme points and coincides with the convex hull of its 
extreme points. Let P~ be the relative topological interior of P, i.e., the 
interior with respect to the topology z restricted to the affine span of P. I f  
P is not empty, then P~ is not empty and 

P~ = {xeP: face(x) = P} 

A face of a polytope is a polytope in its own right. The finite lattice ~ ( P )  
of  faces of  a polytope P has interesting properties (Bennett, 1977). The 
atoms of  ~ ( P )  are precisely the one point sets formed by the extreme 
points of  P. Every face F different from P is contained in a facet and F 
coincides with the intersection of all facets which contain F. 

Let L be a quantum logic, i.e., an orthomodular poset. Let f~(L) be its 
state space, a convex subset of the real vector space RL. A state on L is 
called pure if it is an extreme point of  f~(L). If  the orthomodular poset L 
is finite, then the state space fl(L) is a polytope (Riittimann, 1977). 

A subset A of fl(L) is said to be unital if for every nonzero element p 
in L there exists an element # in A such that / t (p)  equals one. The subset 
A is said to be strong if, for elements p, q in L, 

{#cA: p(p) = 1} _~ {#~A:/~(q) = 1} =~ p < q 

A state # on L is said to be Jauch-Piron if, for elements p, q in L, 

/~(p) = 1 = #(q) => 3r -< p, q with/~(r) = 1 

Clearly, if L is a lattice, then a state is Jauch-Piron if and only if, for 
elements p, q in L, 

/ ~ ( p ) = l = # ( q )  ~ /~(p ^ q ) = l  
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The collection of Jauch-Piron states is denoted by f~jp(L). If  L is finite, 
then to every Jauch-Piron state # there exists a unique element p,  in L 
such that 

( p e L :  = l} = [p . ,  11 

p,  is called the support of/~. 
Let L be a quantum logic and let A be a subset of its state space f~(L). 

A state/~ is called a superposition of the states in A (Kl~iy, 1987; Varadara- 
jan, 1968) if, for elements p in L, 

v(p)= l, VveA ~ #(p)= l 

spp(A) denotes the collection of superpositions of the states in A. We 
write spp(#) instead of spp({#}) for an element # in f2(L). It is easily 
verified that spp(A) is a face of the convex set f~(L). Moreover, for subsets 
A, A1, A 2 of fl(L), (i) A ___ spp(A), (ii) A 1 __ A 2 ~ spp(A1) ---- spp(A2) and 
(iii) spp(spp A) = spp(A). 

Let p be an element in L and define a(p) to be the set of all states # 
such that #(p) equals one. It follows that the set a(p) is a face of ~(L). I f  
p < q, then a(p) ~_ a(q). 

For details concerning orthomodular posets, measures and states on 
such structures the reader may consult Birkhoff (1967), Kalmbach (1983), 
Riittimann and Schindler (1987), and Riittimann (1989, 1990, 1992). 

3. F A C E S  A N D  J A U C H - P I R O N  STATES 

The following result establishes a relationship between superpositions 
and the facial structure of the state space of a finite quantum logic. 

Theorem 3.1. Let L be a finite orthomodular poset. Let A be a subset 
of the state space ~(L) of L. Then 

spp(A) = face(A) 

Proof Since spp(A) is a face of ~q(L), it follows that 

A _~ face(A) _ spp(A) ___ f2(L) 

If  face(A) coincides with f~(L), we are done. Suppose now that face(A) is a 
proper subset of f~(L). Let F be a facet of f~(L) which contains face(A). By 
Rfittimann (1977), Theorem 4.2, F is equal to a(p) for some element p in 
L. Then A is contained in the face a(p). By definition, every superposition 
of A is contained in a(p), i.e., spp(A) is a subset of F. Therefore, 

spp(A) _ [') {F ___ f2(L): F facet of f2(L); face(A) _ F} = face(A) 
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Let L be a finite quantum logic and let # be a state on L. It follows, 
by Theorem 3. I, that 

spp(#) = {#} 

if and only if p is a pure state on L. 
The following lemma admits extensions in various directions. It is 

presented here in the required form. 

Lemma 3.Z Let L be a finite orthomodular poset. 
(i) Let g be a Jauch-Piron state and let the element p~ be its support. 

Then 

spp(#) = a(p.) 

(ii) Suppose that the state space s of L is strong. The state # is 
Jauch-Piron if and only if there exists an element p in L such that 

spp(/z) = a(p) 

Proof. (i) Let v be an element of the face a(p,). Let p be an element 
in L and suppose that #(p) equals one. Then p~ < p and it follows that v(p) 
equals one. Therefore v is a superposition of  {#}. Conversely, let v be a 
superposition of  {#}. Since #(p, )  equals one, we conclude that v(p~) equals 
o n e .  

(ii) Let # be a state and suppose that there exists an element p in L 
such that the condition is satisfied. Furthermore, assume that, for elements 
q and r, 

, ( q )  = 1 = ~ ( r )  

Then/~ belongs to the face a(q)n a(r) and therefore, by Theorem 3.1, 

a(p) - spp(#) _ a(q) n a(r) 

Then p < q, r. Since # belongs to spp(~), we conclude that #(p) equals one. 
The converse follows from (i). 

The following theorem gives us information about the geometrical 
structure of the set fljp(L) of all Jauch-Piron states on L. 

Theorem 3.3. Let L be a finite orthomodular poset. Let f~jp(L) be the 
collection of  Jauch-Piron states on L. For each element p in L let a(p) be 
the set of  all states which evaluate to one on p. Let a(p) ~ be the relative 
topological interior of a(p). Then 

f l jp (L)_  U a(P) ~ 
peL 
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Furthermore, if f~(L) is strong, then 

= U a(P) ~ 
pEL 

Proof. Let # be a Jauch-Piron state. Then, by Theorem 3.1 and 
Lemma 3.2(i), 

face(#) = spp(#) = a(pu) 

Since the face a(p,) is a polytope, we conclude that # is an element in 
a(p) o,. 

Suppose now that fl(L) is strong. Let # be an element in a(p) ~ for 
some element p in L. Then 

spp(#) = face(#) = a(p) 

By Lemma 3.2(ii), # is Jauch-Piron. 

Provided that the state space f~(L) of the finite quantum logic L is 
strong, the following corollary shows that there are 'plenty' of Jauch-Piron 
states. More precisely, the relative topological interior of f~(L) and the 
relative topological interior of each facet of fl(L) belong to f~jp(L). 

Corollary 3.4. Let L be a finite orthomodular poset and suppose that 
the state space D,(L) is strong. Let # be a state on L. If 

codim(faceO)) ~ 1 

then # is Jauch-Piron. 

Proof. If codim(face(#)) equals zero, then face(#) coincides with the 
face a(1). By Theorem 3.1 and Lemma 3.2(ii), # is Jauch-Piron. 

If  codim(face(#)) equals one, then face(#) is a facet of fl(L). By 
Riittimann (1977), Theorem 4.2, there exists an element p such that a(p) 
coincides with face(#). Again, the assertion follows, by Theorem 3.1 and 
Lemma 3.2(ii). 

Theorem 3.5. Let L be a finite orthomodutar poset. Let f~(L) be its 
state space and let flje(L) be the collection of Jauch-Piron states. Then 
TALE: 

(i) The set f~(L) is strong. 
(ii) The set f~jl,(L) is unital. 

(iii) The set t2jv(L) is strong. 

Proof. (i) =~ (ii): Le tp  be a nonzero element in L. Then the face a(p) 
is non-empty and therefore, f~(L) being a polytope, a(p) ~ is not empty. 



154 Rattimnn 

Select an element  # in a(p) ~ Then  p (p )  equals one and,  by T h e o r e m  3.3, 
# is J a u c h - P i r o n .  

(ii) =~ (iii): Let  f~w(L) be a unital  set o f  states. Suppose  that,  for  
elements  p, q in L,  a (p )  is conta ined in a(q). The  o r t h o m o d u l a r  poset  L is 
a tomic,  so let r be an a t o m  with r <-p. Then  there exists an element  # in 
f~jp(L) such that  #(r) equals one. Consequent ly ,  # (p)  is equal  to one and so 
is #(q). Then  there exists an element  s < r, q with #(s) equal  to one. Since 
r is an  a tom,  s and  r are equal,  hence r < q. This  holds true for  all a toms  
major ized by p. Since L is also atomist ic ,  we conclude tha t  p < q. 

(iii) =~ (i): This is obvious.  

4. C O N V E X I T Y  A N D  J A U C H - P I R O N  S T A T E S  

L e m m a  4.1. Let L be an o r t h o m o d u l a r  lattice. The  set f~jp(L) o f  
J a u c h - P i r o n  states is convex.  

Proof .  Let  # and  v be J a u c h - P i r o n  states. Let  ~ denote  the convex 
combina t ion  t# + (1 - t)v, where 0 < t < 1. If, for  elements p, q in L, 

then 

Therefore ,  

~ ( p )  = 1 = r  

I~(p) = 1 = v(p)  and #(q) = 1 = v(q) 

~(p A q) = 1 = v(p A q) 

which implies tha t  ~(p A q) equals one. 

Theorem 4.2. Let  L be a finite o r t h o m o d u l a r  poset.  I f  L admits  a 
convex unital  set A o f  J a u c h - P i r o n  states, then L is a lattice. 

Proof .  Let  Pl ,  P2 . . . . .  Pn be a toms  in L. Let,  for  i = 1, 2 . . . . .  n, #; be 
an element  in A such t h a t / z i ( p ; )  equals one. Not ice  tha t  p; coincides with 
pu .  Let  v denote  the state n - 1 ~7= ~ #i- By hypothesis ,  v is an element  in A. 
Then  

1 ~,, #;(p,) 
1 = v(pv)  n i= 1 

and it follows that,  for  i = 1, 2, . . . ,  n, #~(p~) equals one. Therefore  pv is an 
uppe r  bound  o f  the set {PI, P2 . . . . .  Pn }. Let  r be an upper  bound  for  
{P~,P2 . . . . .  p ,  }. Since pu, < r, for  i = 1, 2 , . . . ,  n, we conclude tha t  v(r) 
equals one and  consequent ly  p~ < r. Therefore  the s u p r e m u m  of  every 
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subset consisting of  atoms exists in L. Since L is atomic and atomistic, we 
conclude, by the generalized associative law, that L is a lattice. 

Let us close this paper with the following observation. 
An orthomodular poset L is said to have the Jauch-Piron property if 

every state on L is Jauch-Piron. 

Theorem 4.3. Let L be a finite orthomodular lattice. Its set of states 
f~(L) is unital and L has the Jauch-Piron property if and only if L is a 
Boolean lattice. 

Proof See Riittimann (1977), Theorem 4.3. 

This theorem together with Theorem 4.2, yields as an immediate 
corollary the following result: 

Corollary 4.4. Let L be a finite orthomodular poset. Its set of states 
f~(L) is unital and L has the Jauch-Piron property if and only if L is a 
Boolean lattice. 

Proof Notice that f~p(L) is convex, since it coincides with f~(L) and 
therefore, by Theorem 4.2, L is a lattice. The assertion now follows, by 
Theorem 4.3. 

We. remark that this result was obtained in Bunce et aL (1985), 
partially relying on methods used in Riittimann (1977). 
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